Showing posts with label hardware Tips. Show all posts
Showing posts with label hardware Tips. Show all posts

Tuesday, November 12, 2013

Computer - Ports

Computer - Ports



What is a Port?

  • A computer port is a physical docking point using which an external device can be connected to the computer.
  • A computer port can also be programmatic docking point through which information flows from a program to computer or over the internet.

Characteristics

  • External devices are connected to a computer using cables and ports.
  • Ports are slots on the motherboard into which a cable of external device is plugged in.
  • Examples of external devices attached via ports are mouse, keyboard, monitor, microphone , speakers, etc.
Ports
Following are few important types of ports:

Serial Port

  • Used for external modems and older computer mouse.
  • Two versions: 9 pin, 25 pin model.
  • Data travels at 115 kilobits per second.

Parallel Port

  • Used for scanners and printers
  • Also called printer port.
  • 25 pin model.
  • Also known as IEEE 1284-compliant Centronics port.

PS/2 Port

  • Used for old computer keyboard and mouse
  • Also called mouse port.
  • Most of the old computers provide two PS/2 ports, each for mouse and keyboard.
  • Also known as IEEE 1284-compliant Centronics port.

Universal Serial Bus (or USB) Port

  • Can connect all kinds of external USB devices such as external hard disk, printer, scanner, mouse, keyboard, etc.
  • Introduced in 1997.
  • Most of the computers provide two USB ports as minimum.
  • Data travels at 12 megabits per second.
  • USB compliant devices can get power from a USB port.

VGA Port

  • Connects monitor to a computer's video card.
  • Has 15 holes.
  • Similar to serial port connector but serial port connector has pins, it has holes.

Power Connector

  • Three-pronged plug
  • Connects to the computer's power cable that plugs into a power bar or wall socket.

Firewire Port

  • Transfer large amounts of data at very fast speed.
  • Connects camcorders and video equipments to the computer
  • Data travels at 400 to 800 megabits per second.
  • Invented by Apple
  • Three variants: 4-Pin FireWire 400 connector, 6-Pin FireWire 400 connector and 9-Pin FireWire 800 connector

Modem

  • Connects a PC's modem to the telephone network.

Ethernet Port

  • Connects to a network and high speed Internet.
  • Connects network cable to a computer.
  • This port resides on an Ethernet Card.
  • Data travels at 10 megabits to 1000 megabits per second depending upon the network bandwidth.

Game Port

  • Connect a PC to a joystick.
  • Now replaced by USB.

Digital Video Interface, DVI port

  • Connects a Flat panel LCD monitor to the computer's high-end video graphic cards.
  • Very popular among video card manufacturers.

Sockets

  • Connect microphone, speakers to sound card of the computer

OS - Memory Management

OS - Memory Management



Memory management is the functionality of an operating system which handles or manages primary memory. Memory management keeps track of each and every memory location either it is allocated to some process or it is free. It checks how much memory is to be allocated to processes. It decides which process will get memory at what time. It tracks whenever some memory gets freed or unallocated and correspondingly it updates the status.
Memory management provides protection by using two registers, a base register and a limit register. The base register holds the smallest legal physical memory address and the limit register specifies the size of the range. For example, if the base register holds 300000 and the limit register is 1209000, then the program can legally access all addresses from 300000 through 411999.
Memory Management
Instructions and data to memory addresses can be done in following ways
  • Compile time -- When it is known at compile time where the process will reside, compile time binding is used to generate the absolute code.
  • Load time -- When it is not known at compile time where the process will reside in memory, then the compiler generates re-locatable code.
  • Execution time -- If the process can be moved during its execution from one memory segment to another, then binding must be delayed to be done at run time

Dynamic Loading

In dynamic loading, a routine of a program is not loaded until it is called by the program. All routines are kept on disk in a re-locatable load format. The main program is loaded into memory and is executed. Other routines methods or modules are loaded on request. Dynamic loading makes better memory space utilization and unused routines are never loaded.

Dynamic Linking

Linking is the process of collecting and combining various modules of code and data into a executable file that can be loaded into memory and executed. Operating system can link system level libraries to a program. When it combines the libraries at load time, the linking is called static linking and when this linking is done at the time of execution, it is called as dynamic linking.
In static linking, libraries linked at compile time, so program code size becomes bigger whereas in dynamic linking libraries linked at execution time so program code size remains smaller.

Logical versus Physical Address Space

An address generated by the CPU is a logical address whereas address actually available on memory unit is a physical address. Logical address is also known a Virtual address.
Virtual and physical addresses are the same in compile-time and load-time address-binding schemes. Virtual and physical addresses differ in execution-time address-binding scheme.
The set of all logical addresses generated by a program is referred to as a logical address space. The set of all physical addresses corresponding to these logical addresses is referred to as a physical address space.
The run-time mapping from virtual to physical address is done by the memory management unit (MMU) which is a hardware device. MMU uses following mechanism to convert virtual address to physical address.
  • The value in the base register is added to every address generated by a user process which is treated as offset at the time it is sent to memory. For example, if the base register value is 10000, then an attempt by the user to use address location 100 will be dynamically reallocated to location 10100.
  • The user program deals with virtual addresses; it never sees the real physical addresses.

Swapping

Swapping is a mechanism in which a process can be swapped temporarily out of main memory to a backing store , and then brought back into memory for continued execution.
Backing store is a usually a hard disk drive or any other secondary storage which fast in access and large enough to accommodate copies of all memory images for all users. It must be capable of providing direct access to these memory images.
Major time consuming part of swapping is transfer time. Total transfer time is directly proportional to the amount of memory swapped. Let us assume that the user process is of size 100KB and the backing store is a standard hard disk with transfer rate of 1 MB per second. The actual transfer of the 100K process to or from memory will take
100KB / 1000KB per second
= 1/10 second
= 100 milliseconds
Process Swapping

Memory Allocation

Main memory usually has two partitions
  • Low Memory -- Operating system resides in this memory.
  • High Memory -- User processes then held in high memory.
Operating system uses the following memory allocation mechanism.
S.N.Memory AllocationDescription
1Single-partition allocationIn this type of allocation, relocation-register scheme is used to protect user processes from each other, and from changing operating-system code and data. Relocation register contains value of smallest physical address whereas limit register contains range of logical addresses. Each logical address must be less than the limit register.
2Multiple-partition allocationIn this type of allocation, main memory is divided into a number of fixed-sized partitions where each partition should contain only one process. When a partition is free, a process is selected from the input queue and is loaded into the free partition. When the process terminates, the partition becomes available for another process.

Fragmentation

As processes are loaded and removed from memory, the free memory space is broken into little pieces. It happens after sometimes that processes can not be allocated to memory blocks considering their small size and memory blocks remains unused. This problem is known as Fragmentation.
Fragmentation is of two types
S.N.FragmentationDescription
1External fragmentationTotal memory space is enough to satisfy a request or to reside a process in it, but it is not contiguous so it can not be used.
2Internal fragmentationMemory block assigned to process is bigger. Some portion of memory is left unused as it can not be used by another process.
External fragmentation can be reduced by compaction or shuffle memory contents to place all free memory together in one large block. To make compaction feasible, relocation should be dynamic.

Paging

External fragmentation is avoided by using paging technique. Paging is a technique in which physical memory is broken into blocks of the same size called pages (size is power of 2, between 512 bytes and 8192 bytes). When a process is to be executed, it's corresponding pages are loaded into any available memory frames.
Logical address space of a process can be non-contiguous and a process is allocated physical memory whenever the free memory frame is available. Operating system keeps track of all free frames. Operating system needs n free frames to run a program of size n pages.
Address generated by CPU is divided into
  • Page number (p) -- page number is used as an index into a page table which contains base address of each page in physical memory.
  • Page offset (d) -- page offset is combined with base address to define the physical memory address.
Paging
Following figure show the paging table architecture.
Paging Example

Segmentation

Segmentation is a technique to break memory into logical pieces where each piece represents a group of related information. For example ,data segments or code segment for each process, data segment for operating system and so on. Segmentation can be implemented using or without using paging.
Unlike paging, segment are having varying sizes and thus eliminates internal fragmentation. External fragmentation still exists but to lesser extent.
Logical Address Space
Address generated by CPU is divided into
  • Segment number (s) -- segment number is used as an index into a segment table which contains base address of each segment in physical memory and a limit of segment.
  • Segment offset (o) -- segment offset is first checked against limit and then is combined with base address to define the physical memory address.
Segmentation Example

Thursday, February 21, 2013

Common Errors in PC & There Solution




1. MONITOR LED IS BLINKING
Check all the connections like Monitor Cable, Data cables,RAM, Display Card , CPU connections.

2. CONTINUOS THREE BEEPS
Problem in RAM Connection.

3. THREE BEEPS ( 1 Long 2 Short)
Problem 
in Display Card Connection

4. THREE LONG BEEPS PERIOD WISE
Problem in BIOS or RAM (Basic Input Output System)

5. CONTINUOS NON-STOP BEEPING
Key Board Problem (I.e.; Some Key is pressed for Longer time)

6. FDD LED IS GLOWING CONTINUOSLY
Data cable to be connected properly (twisted cable).

7. NO DISPLAY ON THE SCREEN AT ALL
Hard Disk cable connected wrongly. Connect rightly seeing the Red mark (Faces power supply) and then Restart.

8. POWER LED IS OFF
a. Check main power cord
b. Check S.M.P.S.
c. Check Mother Board connection

9. SHOWING CMOS ERROR
Replace 3 Volt battery of Mother Board . Set Original Settings Manually.(Refer CMOS Setup chart)
Enter your search termsSubmit search form

10. SHOWING FDD ERROR OR FLOPPY DRIVE IS NOT WORKING PROPERLY
Check Power cord of FDD , Data Cables , set CMOS & Finally the Check drive.

11. SHOWING HDD ERROR OR HARD DISK FAILURE
a. Check Power Cord
b. Check connection of HDD
c. Check Data cable
d. Check Hard Disk parameters in CMOS or Auto detecting Setting Partitions by Fdisk Command, then format it to set track 0.

12. MOTHER BOARD HANGS DUE TO UNSTABILIZED POWER SUPPLY
a. Check S.M.P.S
b. RAM not functioning properly.
c. Software problem (due to using pirated software)
d. CPU fan not functioning properly.

13. DANCING SCREEN
a. Check Display card connection
b. Virus Problem
c. Video Memory Problem

14. SHAKING SCREEN
a. Earthing problem
b. Magnetic waves comes around.

15. CPU CABINET SHOCK
a. Check Earthing
b. Check main power cord.

16. NON-SYSTEM DISK ERROR
a. Floppy Drive having different disk (Non-Bootable Disk) OR CMOS Parameters for Hard Disk may not be set properly.
b. Hard Disk Partitions may not be created.
c. Hard Disk may not be formatted.

7. MISSING OPERATING SYSTEM
The System files missing namely Ie; command.com} - User File IO.SYS & MS_DOS.SYS } - Hidden Files. These above three files required for Start up of the system that can be transferred by using SYS C: Command OR While the time of formatting by using Format c:/u/s

18. MISSING COMMAND INTERPRETOR
May the file Command.com is corrupted OR Infected by Virus OR Some one has Erased it.

19. SHOWING I/O ERROR
a. The type of Hard Disk in CMOS may not be set properly.
b. Operating system used for formatting is not valid

20. SHOWING DIVIDE OVER- FLOW MESSAGE
a. May some Directories or Files crash with other files.
b. Use CHKDSK/F or SCANDISK Command to correct it.

21. HARD DISK MAKING NOISE WHILE PROCESSING
a. Unstabilized power supply.
b. Check for Loose Contact.
c. Do not use Y Connectors for Hard Disk.
d. It may create Bad Sector OR Weak Hard Disk.

22. HARD DISK HANGS WHILE PROCESSING
Check for Bad Sector by using CHKDSK or SCANDISK Command. If found format the Hard Disk and set Partition before that area.(This is the only procedure to use Hard Disk with Bad Sector) OR (To avoid Bad Sectors use Standard Power Supply)

23. HARD DISK NOT DETECTED
a. Check Power Connector
b. Check Data Cables
c. Check Jumpers

24. PARTITION NOT SHOWN
Operating System where the Hard Disk formatted is not supported with present Mother Board. For Eg: Hard Disk formatted with Pentium System will hide their partitions for 486 System.

25. MMX/DLL FILE MISSING
May the above files may be corrupted due to power failure or Virus. Make available above files from other Computer. OR Reinstall Windows 98 Operating System. (This procedure will not make any effect on existing Data).

26. WINDOWS REGISTRY ERROR
This will happen due to sudden ON/OFF of the system. Final solution is to Reinstall Operating System.

27. DISPLAY COLOUR DOES NOT MATCH
a. Configure Display Card properly with their CD.
b. The Standard setting for Windows is set it to 800x600 for better performance.

28. UNKNOWN DEVICE FOUND
May the Driver utility is not provided with operating system . Insert Driver CD and install software for the above Device. (Every Device requires driver utility to set active

Please comment below and also mention me if I have missed any point.

Translate